Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity.

نویسندگان

  • Andrew B West
  • Darren J Moore
  • Saskia Biskup
  • Artem Bugayenko
  • Wanli W Smith
  • Christopher A Ross
  • Valina L Dawson
  • Ted M Dawson
چکیده

Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) cause late-onset Parkinson's disease (PD) with a clinical appearance indistinguishable from idiopathic PD. Initial studies suggest that LRRK2 mutations are the most common yet identified determinant of PD susceptibility, transmitted in an autosomal-dominant mode of inheritance. Herein, we characterize the LRRK2 gene and transcript in human brain and subclone the predominant ORF. Exogenously expressed LRRK2 protein migrates at approximately 280 kDa and is present largely in the cytoplasm but also associates with the mitochondrial outer membrane. Familial-linked mutations G2019S or R1441C do not have an obvious effect on protein steady-state levels, turnover, or localization. However, in vitro kinase assays using full-length recombinant LRRK2 reveal an increase in activity caused by familial-linked mutations in both autophosphorylation and the phosphorylation of a generic substrate. These results suggest a gain-of-function mechanism for LRRK2-linked disease with a central role for kinase activity in the development of PD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parkinson's disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity.

Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) cause late-onset Parkinson's disease indistinguishable from idiopathic disease. The mechanisms whereby missense alterations in the LRRK2 gene initiate neurodegeneration remain unknown. Here, we demonstrate that seven of 10 suspected familial-linked mutations result in increased kinase activity. Functional and disease-associated mutation...

متن کامل

Antioxidants inhibit neuronal toxicity in Parkinson's disease-linked LRRK2.

Mutations in leucine-rich repeat kinase-2 are the most common cause of familial Parkinson's disease. The prevalent G2019S mutation increase oxidative, kinase and toxic activity and inhibit endogenous peroxidases. We initially screened a library of 84 antioxidants and identified seven phenolic compounds that inhibited kinase activity on leucine-rich repeat kinase-2 substrates. The representative...

متن کامل

LRRK2 GTPase dysfunction in the pathogenesis of Parkinson's disease.

Mutations in the LRRK2 (leucine-rich repeat kinase 2) gene are the most frequent genetic cause of PD (Parkinson's disease), and these mutations play important roles in sporadic PD. The LRRK2 protein contains GTPase and kinase domains and several protein-protein interaction domains. The kinase and GTPase activity of LRRK2 seem to be important in regulating LRRK2-dependent cellular signalling pat...

متن کامل

Is inhibition of kinase activity the only therapeutic strategy for LRRK2-associated Parkinson's disease?

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are a common cause of familial Parkinson's disease (PD). Variation around the LRRK2 locus also contributes to the risk of sporadic PD. The LRRK2 protein contains a central catalytic region, and pathogenic mutations cluster in the Ras of complex protein C terminus of Ras of complex protein (mutations N1437H, R1441G/C and Y1699C) and kina...

متن کامل

Parkinson's Disease: Leucine-Rich Repeat Kinase 2 and Autophagy, Intimate Enemies

Parkinson's disease is the second common neurodegenerative disorder, after Alzheimer's disease. It is a clinical syndrome characterized by loss of dopamine-generating cells in the substancia nigra, a region of the midbrain. The etiology of Parkinson's disease has long been through to involve both genetic and environmental factors. Mutations in the leucine-rich repeat kinase 2 gene cause late-on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 46  شماره 

صفحات  -

تاریخ انتشار 2005